compounds where $R_1 = 2,6$ -dimethylphenyl (compounds 14, 38, 55, 69) and N-ethyl, o-tolyl (compounds 17, 40, 70, 86) as well as compound 56 mentioned above. Here, it is likely that there is no interaction between the substituted phenyl group, its attached nitrogen and the triazine ring and the noted spectrum would be largely a function of triazine absorption.¹⁴

The anti-bacterial and anti-fungal studies have been hampered by the relatively poor solubility of the compounds of Table I in aqueous systems at physiological pH values.

EXPERIMENTAL

Guanamines of Table I. These were prepared by the same general procedure.

A solution of 0.025 mole of the biguanide hydrochloride (or nitrate) in 25 ml. of methanol was treated with 24 ml. (0.05 mole) of 23% sodium methoxide in methanol followed by 0.025 mole of ester. The reaction mixture was maintained at 20° for 24-48 hr. and then decanted in 60 ml. of water. After 72 hr., the formed precipitate of product was separated, dried and recrystallized.

In those instances where analyses indicated that the isolated material was a complex with the reactant biguanide (compounds 50, 53, 55, 67, 68, 85), this complex was dissociated by a 2-3 hr. reflux in water. The biguanide dissolved in the hot water, and the insoluble guanamine was separated and recrystallized.

Acknowledgement. The authors wish to thank R. Levinton for the data on the anti-bacterial activity.

YONKERS 1, N. Y.

[Contribution from the Organic Research Laboratories of the U. S. Vitamin and Pharmaceutical Corporation]

Guanamines.¹ IV. Pyridylguanamines

SEYMOUR L. SHAPIRO, VINCENT A. PARRINO, AND LOUIS FREEDMAN

Received October 30, 1959

A series of 2-amino-4-substituted amino-6(2-, 3- and 4-pyridyl)-s-triazines has been synthesized and examined for pharmacological activity. Significant activity as antiinflammatory, analgesic, and diuretic agents has been noted with selected compounds.

Our investigations of guanamines with pharmacological activity are extended to pyridylguanamines of the type I.²

The synthesis of the guanamines (Table I) was effected by reaction of the substituted bigua-

(1) For previous papers in this series, see (a) S. L. Shapiro, V. A. Parrino, K. Geiger, S. Kobrin, and L. Freedman, J. Am. Chem. Soc. 79, 5064 (1957); (b) S. L. Shapiro, V. A. Parrino, and L. Freedman, J. Am. Chem. Soc., 81, 3996 (1959); (c) S. L. Shapiro, V. A. Parrino, and L. Freedman, J. Org. Chem., 25, 379 (1960).

(2) Compounds of type I have not been previously reported. For compounds having more than one pyridyl nucleus on the triazine ring, see (a) S. Saure, *Chem. Ber.*, 83, 335 (1950); (b) H. J. Kahn, V. A. Petrow, R. Wien, and J. Harrison, J. Chem. Soc., 858 (1945); (c) P. B. Russel and G. H. Hitchings, J. Am. Chem. Soc., 72, 4922 (1950); (d) F. H. Case and E. Koft, J. Am. Chem. Soc., 81, 905 (1959); for pyridylamino-s-triazine compounds, see (d) J. T. Thurston, U. S. Patent 2,474,194 (June 21, 1949); (e) W. O. Foye and A. E. Buckpitt, J. Am. Pharm. Assoc., Sci. Ed., 41, 385 (1952).

nide in methanol with the appropriate pyridine carboxylic acid ester under sodium methoxide catalysis. Yields of product I were considerably better when R_1R_2N — was derived from aliphatic amines than from aryl amines. This may be associated with the formation of complexes between the product and the reactant biguanide,^{1b,1c} and one such complex was isolated in this series. In selected instances (with arylbiguanides), the only isolable product was the nicotinic or isonicotinic acid salt of the biguanide.

Structures such as I, Py = 2-pyridyl, suggested chelation with iron and other metallic ions,^{2d,3} and attempted preparation of bisquanternary structures of type II, as herbicides.⁴

The attempt to convert I, Py = 2-pyridyl, to the corresponding bisquaternary salt with ethylene dibromide yielded only unchanged reactant.

(3) G. Maerker and F. H. Case, J. Am. Chem. Soc., 80, 2745 (1958).

(4) R. J. Fielden, R. F. Homer, and R. L. Jones, U. S. Patent 2,823,987 (Feb. 18, 1958).

⁽¹⁴⁾ For related observations, see (a) H. Lumbroso and R. Dabard, Bull. soc. chim. France, 749 (1959); (b) A. Arcoria, H. Lumbroso and R. Passerini, Bull. soc. chim. France, 754 (1959); (c) S. L. Shapiro, I. M. Rose, F. C. Testa, E. Roskin, and L. Freedman, J. Am. Chem. Soc., 81, 6498 (1959).

TABLE I ^d yridylguanamines, ^{a,j} I
--

		M.P.,	Yield.		Č	rhon	Ana	yses ^c		
\mathbb{R}_2		°C.a,b	%	Formula	Calcd.	Found	Calcd.	rogen Found	Nitr Calcd.	ogen Found
				Py = 3-pyridyl						
CH3- 200 H	200	⊢202 ^b 1 140	43	C10H12N6					32.0	0 06
H 120	120	-149 -123	44 45	C _{II} H _I N					36.8	00.0 37 2
164	164	-166	6 2		60.4 20.2	60.3	7.0	7.0	32.5	32.6
H 155	155	-157	54	C.H.N.	00.9 0.00	60.8 20 2	6.3	6.4	32.8	32.8
H 154	154	-155	45		7.70	02.2	6.7	6.8	31.1	30.8
H 217-	217-	-218	19	C.H.N.	03.1 62 6	65.6 62.6	5.5	5.8	28.8	28.6
H				01+21++61~	0.00	03.0	4.6	4.7	31.8	31.9
н 216- Н	216	-2185	81 8	ClifH14N6	64.7	64.8	5.1	5.2	30.9	0.00
H 209	200	-210bi	00 20 20		64.7	64.8	5.1	4.8	30.2	30.4
H 194-	194-	195	26	Cletticus		1			28.8	28.8
H 182-	182-	1925	4	CIGHTIGING	00.7	65.7	5.5	5.6	28.8	28.7
H 204-5	204-5	205	31	C.H.N.	1.00	8.00	5.5	5.9	28.8	28.6
H 162-	162 - 1	163	32	C.H.N.	00.7 65 7	00.0	5.5	5.6	28.8	28.8
203-2	203 - 5	204ba	16	C.H.N.	100.7 66 99	00.2	5.5	5.7	28.8	28.8
C2H5-146-1	146-1	48	37	C,H.N.	00.4 66.6	0.00	4.9	$\frac{4.9}{1}$	29.0	28.6
C ₃ H ₅	183-1	85	31	CryH.N.	0.00 999	67 D	9.9 2	5.9	27.4	27.0
H 213-2	213 - 2	15 ^{bı}	19	Ci,H,BrN.	49.0	1. 10	0.G	6.1	:	
H 178-1	178-1	80	31	C ₁₆ H ₁₈ CIN ₆	57.6	±0.7	0.7 7 7	3.7	24.5	25.0
н 184-1 Н 900 о	184-1	86 26	24	C16H11CIN6	57.6	57.8	4 2	4.1	96.0	0 10
17-607	7-607	1	10	$C_{16}H_{16}N_6O_2$	59.3	59.2	5.0	5.0	25.0	2.12
) 	2.21	4.04
,				Py = 4-pyridyl						
CH3- 229-2	229-2	31 ^{bi}	45	C10H12N6	55.5	55.7	5 6	0.9	000	1
		52	52	C ₁₁ H ₁₂ N ₆	57.9	58.0	2.2	4 0	8.00	38.5
120-120-120-	170	100	45	ClaH ₁₈ Ne	60.4	60.1	7.0	8.9		
H H	186	107	20	CiaHieNe	60.9	60.9	6.3	6.2	32 g	33 0
H 173-	173-	.174bi	77 77	CitHIN'S	62.2	61.8	6.7	6.5		0.00
H 211-	211-	213	89		1.60	65.5	5.5	5.8	28.8	29.0
H 208-	208-	210ba	41	C. H N.	03.0	63.8	4.6	4.5	31.8	32.2
H 233-2	233 - 2	34 br	16		04.7	64.8	5.1	5.3	30.2	30.0
H 183-1	183-1	87	10	OIGHING N H N	04.7	64.5	5.1	5.4	30.2	30.0
H H	186-1	88	90 00		69.7	65.4	5.5	5.7	28.8	28.80
H 146–1	146-1		00 60	ClicHieNe	65.7	65.3	5.5	5.3	2	0.0*
H 2002	6606	80	35		65.7	65.3	5.5	5.6	28.8	2,8,7
H 213_5	213-212		01	CithieNe	65.7	65.9	5.5	5.5	28.8	20.4
H 1.80-1	180-1		91		65.7	66.0	5.5	5.4	28.8	28.5
230-5	230-5	231 ba	77		62.3	62.2	5.2	5.0		2.21
C ₂ H ₅ - 220-5	220 -	221 bi	30	N H	2.00 2.00	66.1 22 2	4.9	5.0	29.0	29.2
			;	VI/4418-10	00.0	00.9	5.9	5.5	27.4	27.2

MARCH 1960

PYRIDYLGUANAMINES

385

				TAF	3LE I (Cont	(inued)					
								AL	alyses		
			M.P.	Yield			Carbon	H	lydrogen	Nit	rogen
No.	$\mathbf{R_{i}}$	$\mathbf{R_2}$	°C.a,b	%	Formula	Calc	d. Found	I Calcd.	Found	Calcd.	Found
40^{i}	4-CH ₃ C ₆ H ₄	C ₂ H ₅	170–171 ^{br}	21	C ₁₇ H ₁₈ N ₆	66.6	6.99 66.9	5.9	5.9	27.4	27.0
41	3-CI-Cutt-	H	213-215 ^b	22	C ₁ ,H ₁ ,CIN	50.5 10.5	3 56.4	3.7	3.7	28.1	28.0
47 7	3-Br-Cahi-	ᄇ	233-235 ¹⁴	22 72		6 49.C	48.7		3.5	24.5 90.0	24.6
43 7 4		4 4	728-229 ⁴⁴	67. 90		8 31.1 77 6	31.1	4.4	4.1 4 4	20.9 96.02	2.12
45	2.5-di-CH ₃ O-C ₆ H ₃ -	н	238-239 ^{ba}	ဒုဆ	ClieHieNeO.	2 59.3	59.4	5.0	4.9	25.9	25.7
				P_{y}	= 2-pyridyl	_					
27	пл	БIJ	010 000	. GF	N D C	L L L	u u u	и 1	0 14	0.96	0 00
40 47		H H	238-240 148-150	45 62	Cientane C.H. N.	90.09 109	0.00 1009	0.0	0.0 9	00.9 29.5	30.0 29.7
48	C.H.	1 🎞	234-235	38	C.H.N.	63.6		4.6	4.7	31.8	31.6
49	2-CH,C,H,	H	176-178	34	C.H.N.	64.7	7 64.8	5.1	4.8	30.2	30.6
50	2,4-di-CH ₃ -C ₆ H ₃	Н	189-191	29	C ₁₆ H ₁₆ N ₆	65.7	7 65.2	5.5	5.7	28.8	29.1
51	2-CH ₁ C _i H ₁	C2H5	206-208	51	C,HIN	66.6	3 67.0	5.9	5.8	27.4	27.4
52	P-CI-C,H,	Н	244 - 246	24	C ₁ ,H ₁ ,CIN	50.3	3 56.3	3.7	3.7	28.1	28.0
23	p-ClC,H	$C_{s}H_{s}$	215-217	42	C ₁₆ H ₁₆ CIN	58.5	3 59.4	4.6	4.5	25.7	26.0
54	3-BrC,H,	'H	183-184	29	C, H, BrN	49.C	(49.4	3.2	3.5	24.5	24.2
55	5-Cl-2,4-di-CH ₃ OC ₆ H ₂ -	H -	$246-250^{b_2}$	21	C ₁₆ H ₁₆ CIN	602 53.6	3 53.9	4.2	4.4	23.4	24.0
)		0	D	0	•			4			
		M.P.,			Carbon		Hydr	ngen	4	Nitrogen	
	Comp. No.	°C. a,b	Formula	Caled	Fc	punc	Caled.	Found	Calcd.	Found	
	2	220 ^b a	C ₁₇ H ₁₅ N ₉ O ₇	44.6	4	4.6	3.3	3.0	27.6	27.6	
	80	209-211	$C_{21}H_{17}N_9O_7$	49.7	4	9.6	3.4	3.4	24.8	25.0	
	12 24	212 933b	C22H19N9O7	50.7 44 6	5 4	1.0 4.6	3 3 3 3	5, 6 7, 6 7, 6	97 G	97 G	
^t It i aqueou	s of interest that recrystallize s media. ^J In the attempted pi	ation from aqueo reparation of the	us acetic acid does subject compounds	not yield the , in the follow	acetic acid s ing instances	alt. The basic the product i	city of the corr isolated was th	tpound is evid e nicotinic acid	tently too low to d salt of the rea	o form acetic ctant biguan	acid salts in ide:
		M.P			Carbo	u	Hyc	lrogen	N	itrogen	
	${ m R_{i}}$	°C.a,b	Formula	C	Jaled.	Found	Caled.	Found	Calcd.	Found	-
	3-ClC ₆ H ₄	188-189 ^b	C ₁ ,H ₁ ,CIN	O_2	50.2	50.5	4.5	4.3	25.1	25.2	
	2-CH ₁ -4-BrC ₆ H ₃	192-192 1920-050		ç Ç	45.8 45 K	45.0 45.1	4 C 4 O	4.4 9.0			
	3,4-01-01-06.013- 2-CH ₃ -4-BrC6H ₃ k	194-198 ^b	ClsH17BrN	0.	45.8	45.8	0.0 4.4	4.4	21.4	21.4	
k Iso	nicotinic acid salt.										

SHAPIRO, PARRINO, AND FREEDMAN

The 2-pyridyl guanamines gave colored solutions or precipitates with ferrous ion, whereas the 3and 4-pyridyl compounds did not.

Since pyridylguanamines can be envisioned as derivatives of nicotinamide and isonicotinamide with the triazine ring supplying the carboxamide type function.⁵ as shown for III,

a variety of pharmacological effects associated with these pyridine derivatives was evaluated.

No systematic pharmacological response was noted which would permit an analysis of structure vs. activity,⁶ although in general, the most active structures were found with the alkylamino derivatives of I, Py = 3- and 4-pyridyl. Upon evaluation⁷ the following compounds showed antiinflammatory activity: 7(15 units/g.), 26 (4 units/g.); analgesic activity: 27 (33% at 75 mg./kg.), 28 (83% at 330 mg./kg.). Compounds 2 and 24 showed diuretic action in rats, and also lowered blood pressure significantly. Compound 17 had 4+ anticonvulsant activity associated with a negative Evipal sleeping time response.

(5) F. C. Schaefer, J. R. Dudley and J. T. Thurston, J. Am. Chem. Soc., 73, 3004 (1951).

(6) For pharmacological study of 5-(4-pyridyl)-3-amino-1,2,4-triazols, see K. Biemann and H. Bretschneider, *Monatsch. Chem.*, **89**, 603 (1958).

(7) The following screening techniques applied have been described. (a) Antiinflammatory activity: S. L. Shapiro, H. Soloway, and L. Freedman: J. Am. Pharm. Assoc., Sci. Ed., 46, 333 (1957); (b) analgesic: C. Bianchi and J. Franceschini, Brit. J. Pharmacol., 9, 280 (1954); (c) anticonvulsant activity and Evipal sleeping time: S. L. Shapiro, I. M. Rose, E. Roskin, and L. Freedman, J. Am. Chem. Soc., 80, 1648 (1958); also ref. 1b; (d) diuretic: see ref. 1a; (e) blood pressure: S. L. Shapiro, H. Soloway, and L. Freedman, J. Am. Chem. Soc., 80, 2743 (1958).

EXPERIMENTAL

Reactants. The biguanides utilized in this study have been described.⁸ Ethyl picolinate was prepared in 58% yield, b.p. 118-122° (14 mm.), following the procedure described for ethyl nicotinate.⁹

Pyridylguanamines of Table I. The compounds of Table I were prepared by the same general procedure. A solution of 0.025 mole of the biguanide hydrochloride (or nitrate) in 25 ml. of methanol was treated with 24 ml. (0.05 mole) of 23% sodium methoxide in methanol followed by 0.025 mole of the pyridine carboxylic acid ester. The reaction mixture was maintained at 20° for 24-48 hr. and then decanted into 60 ml. of water. After 72 hr., the precipitate was separated, dried, and recrystallized.

Color reactions. Ferrous ion $(200 \text{ mg./l.})^{10}$ gave brown solutions with compounds 46 and 47, and purple precipitates with compounds 48 and 52. Compound 53 did not react under these test conditions and may have been too insoluble. The 2-pyridylguanamines having an alkylamino substituent give a different color response from those with the arylamino substituent.

The related compounds (1, 2, 7, 18, 23, 29, 24, 40) in the 3- and 4-pyridyl series gave no color with ferrous ion under these conditions.

With cupric ion (500 mg./l.) a brown color was noted with compound 46, and when the hydroxylamine hydrochloride solution was not added, a green color was obtained. Compound 52 under similar conditions gave a brown and green precipitate, respectively.

Acknowledgment. The authors are indebted to Dr. G. Ungar and his staff for the pharmacological screening of the compounds.

YONKERS 1, N. Y.

(8) (a) S. L. Shapiro, V. A. Parrino, E. Rogow, and L. Freedman, J. Am. Chem. Soc., 81, 3725 (1959); (b) S. L. Shapiro, V. A. Parrino, and L. Freedman, J. Am. Chem. Soc., 81, 3728 (1959).

(9) H. Gilman and H. S. Broadbent, J. Am. Chem. Soc., 70, 2755 (1948).

(10) The procedure used was adapted from Official Methods of Analysis of the Association of Official Agricultural Chemists, Association of Official Agricultural Chemists, Washington, D. C., 8th Ed., 1955, p. 208; using 1 ml. of test solution, 0.1 ml. of hydroxylamine hydrochloride solution, 0.5 ml. of acetate buffer solution and about 2 mg. of the pyridylguanamine, and heating to boiling.

[CONTRIBUTION FROM THE CHEMICAL LABORATORY, UNIVERSITY OF CALIFORNIA AT LOS ANGELES]

A Convenient Synthesis of *t*-Alkyl Esters of Amino Acids^{1a}

ARNULF VOLLMAR AND MAX S. DUNN

Received October 22, 1959

The preparation of *t*-alkyl esters of glycine, alanine and phenylalanine *via* the corresponding azido derivatives is described and some of the characteristics of the compounds are pointed out.

A convenient synthesis of *t*-alkyl esters of amino acids, desired for certain kinetic and microbiological investigations, is reported in this paper. Standard procedures for the preparation of amino acid esters of primary and secondary alcohols are well known and have been reviewed recently,^{1b} but amino acid esters of *t*-alcohols are less readily accessible because of the lability of *t*-alcohols in acid media. Amino acid esters of *t*-alcohols should be of interest in peptide synthesis in view of their ready hydrolysis under mild acid conditions.

The t-butyl and trichloro-t-butyl esters of N,N-